

Model Based Materials Processing for In-Space Fabrication

John E. Smugeresky¹, David M. Keicher² and Richard Grylls²

¹Sandia National Laboratories, Livermore, CA 94551-0969 ²Optomec Design Company, Albuquerque, NM 87123

In-Space Fabrication and Repair Research: An Industry - NASA - Academia Technical Forum July 8-10, 2003

> Laser Engineered Net Shaping (LENS™), is a registered trademark of Sandia National Laboratories

Work Performed under a CRADA supported by an Optomec NSF Project and by the U. S. Department of Energy under contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

NASA InSpaceFabMatls5.ppt:JES/8724

Topics

- Laser Assisted Materials Processing
 - Based on Physical Metallurgy Principles
- Microstructure Via Solidification Processing
 - Materials, Microstructure, and Property Relations
- Features Related to In-Space Fabrication
- Potential of LENS™ for Pseudo-Universal In-Space Materials Fabrication

Model Based Metal Forming (LENS™)

Laser Powder Deposition

- 1. Laser Beam Scans a
 Substrate While Powdered
 Materials are
 simultaneously delivered
 to the Laser focal point
- 2. Model defines scanning patterns and where material is wanted, turns on Laser, and powder particles are captured, adding material to the substrate
- 3. Small Molten Pool Is
 Formed and Quickly Cools,
 Leaving Behind a Narrow
 Deposited Solid Line of
 Material

Laser Engineered Net Shaping (LENS™)

Electronically
Designed
Model of Housing

- CAD Solid Model
- Electronically Segmented Into Horizontal Layers
- Scanning Patterns Created

LENS™ Additive Forming Process

- Laser Powder Deposition
- * Forms Part Line by Line
- Layer by Layer
- Without Tooling

Finished
Functional
Housing

Laser Engineered Net Shaping (LENS™) Is an Additive Forming Process for Structural Materials

QuickTime™ and a Cinepak decompressor are needed to see this picture.

> QuickTime[™] and a Cinepak decompressor are needed to see this picture.

Cross Section of Deposited Material Shows Solidification Microstructures

316 SS Highest Strength

Sample 010996-V

Ultimate Tensile Strength 115 KSI Yield Tensile Strength 85 KSI Total Elongation in 1 inch 30 pct

Travel Speeds
Molten Pool Width

≤ 40 ipm ≤ 0.040 in.

Deposit Detail Depends on Processing Conditions

FR5
Ratio = 600
Power = 300 W,
Speed = 30 ipm
PFR = 30

FR3
Ratio = 600
Power = 300 W,
Speed = 30 ipm
PFR = 20

Microstructure Control based on Temperature Distribution and Kinetic Data from High Speed Imaging of Deposition

"Image" of Melt Pool
As Viewed Through Laser Optics

From Hofmeister, et. al

Movies Show Differences in Melt Pool Depending on Processing Conditions

Cooling Rate at Solid Liquid Interface of Line Builds **Suggests Rapid Solidification Deposition Conditions**

The cooling rates were calculated from image data frame by frame, and the standard deviations of these measurements for each file are shown in the error bars.

The Principles of Rapid Solidification and Materials Science can be used to Select Microstructural Features For Enhanced Properties

Topics

- Laser Assisted Materials Processing
 - Based on Physical Metallurgy Principles
- Microstructure Via Solidification Processing
 - Materials, Microstructure, and Property Relations
- Features Related to In-Space Fabrication
- LENS™ as Potential Pseudo-Universal In-Space Materials Fabrication

By Varying the Cooling Rate, Microstructure Features Can Be Selected

For Fe-25wt.%Ni: $\lambda_2 = 60\epsilon^{-0.32}$

From Thoma, et. al

λ₂≈12.5μm ε≈150K/s

 $λ_2≈3μm$ ε≈1x10⁴ K/s

Grain/Cell Refinement and Absence of Long Sulfide Stringers Observed in 316 Stainless Steel

Conventional Process (grain size = 50 μm)

ASTM 6

LENS™ Process (grain/Cell size = 5 μm) ASTM 13

Mechanical Properties of LENS™ Processed Materials Exceed Those of Wrought Annealed Barstock

	LENS™ IN 625	Wrought IN 625	LENS™ 316 SS	Wrought 316 SS
UTS (KSI)	135	121	115	85
YTS (KSI)	92	58	65 ←	35
et (%)	38	37	51 ←	 50

Strength is Enhanced with No Loss of Ductility

Strengthening Consistent with Hall-Petch Grain Size Relationship

Conventional Processing $d_1 = 50 \mu m$

LENSTM Processing $d_2 = 5 \mu m$

Hall-Petch Yield Strength (σ) = K (d)^{-1/2}

$$\frac{(\sigma_2)}{(\sigma_1)} = \frac{(d_1)^{1/2}}{(d_2)^{1/2}}$$

$$\frac{(\sigma_2)}{(\sigma_1)} = (10)^{1/2} \approx 3 \text{ fold increase}$$

Yield Stress Can Be Selected, by Process Parameter P, to More Than Twice That of Annealed 316 SS

 $R^2 = 0.72$

Ductility Appears Independent of **Process Parameter P**Over the Range That Can Double the Strength for 316 SS

Can Use Processing Conditions to Vary Cooling Rate and Control Grain Size

Lower Cooling Rate: Largest Grain Size

Higher Cooling Rate Smallest Grain Size FR7

Faster Cooling Rate Gives
Smaller Grain Size and Should Provide Higher Strength.

Dislocation Density is Similar to Annealed Condition But Does Vary with Process Conditions

Typical Dislocation Densities g = (111)

Lower Cooling Rate FR4

Higher Cooling Rate

A Variety of Metals Have Been Processed by LENS™

- Stainless steels: <u>316</u>, 304L, and 309S
- Nickel alloys: 718, 625, and 690
- Tool steel alloys
 - (H-13, Nu-Die EZ, MM-10, CPM-10)
- Titanium (6AI-4V)
- Limited Amounts of:
 - Aluminum
 - Titanium Aluminide (γ)
 - Tungsten
 - Cermets
 - Magnetic alloys

Columnar Microstructure Suggests Epitaxial Growth Across Layer Boundaries

Lower Power Provides Finer Structure

Ti-6AI-4V

Higher Power

Lower Power

TEM Microstructures

- 19 IIICIOII
- Acicular alpha (hcp phase; light phase)
- Intergranular beta (bcc phase; dark phase) titanium.
- The acicular a transformed from the beta phase during cooling from above the beta transus (883 °C).
- The alpha phase forms by nucleation and growth on crystallographic planes of the prior beta.
- Leads to packets or colonies of alpha aligned in the same orientation. Multiple orientations of alpha yield the basket-like appearance observed in this microstructure.

Enhanced Mechanical Properties Can Be Maintained at Build Rates up to 18 cc/hr*

Yield Strength is weakly dependent on build rates investigated

* 1.0 in³/hr)

Ductility (pct elongation) appears independent of build rate with one exception

For Ti-6Al-4V Build Rates up to 180 cc/hr* Have Recently Been Achieved

Properties After HIPping:

Ultimate 133 KSI Tensile 118 KSI

Elongation 14 % RA 37 %

Other Data for Comparison

Sample ID	UTS (KSI)	YTS (KSI)	et (%)
plate, trans.	151.7	146.3	16.4
plate, align	154.7	148.0	16.0
LENS-SNL	145.0	135.0	15.0
LENS-Optomec	170.0	155.0	11.0
Specification	140.0	120.0	10.0

* 10.0 in³/hr)

Topics

- Laser Assisted Materials Processing
 - Based on Physical Metallurgy Principles
- Microstructure Via Solidification Processing
 - Materials, Microstructure, and Property Relations
- Features Related to In-Space Fabrication
- LENS™ as Potential Pseudo-Universal In-Space Materials Fabrication

Hollow Core Block Exhibiting Overhang Capability

Allows Building of Hollow Features
In Tooling for Plastic Injection Molding or Weight Reduction

LENS Processed Titanium (Ti-6AI-4V) Component Feature Development

2 inches

Achieving 90° Overhang is Another Driver For Process Improvement

Started at 17° from Vertical Overhang

Topics

- Laser Assisted Materials Processing
 - Based on Physical Metallurgy Principles
- Microstructure Via Solidification Processing
 - Materials, Microstructure, and Property Relations
- Features Related to In-Space Fabrication
- LENS™ as Potential Pseudo-Universal In-Space Materials Fabrication

LENS™ Processed Aluminum Is of Interest to DoD for Sensor and Thermal Management Applications

For Aluminum Alloys: Have Demonstrated Ability to Make Hollow cylinders

For Metal Matrix Composites:
Have Achieved a More Uniform and
Larger Volume Fraction Particulate
Than Alternate Processing
Technologies

Using LENS[™] Process to Fabricate Nano-Crystalline Hard Materials

- Tungsten carbide (WC) has exceptional hardness and wear/corrosion resistance.
- Introduction of Co as a binder (in a range of 3% to 30%) can improve the overall toughness and avoid brittle fracture of the wear resistant WC phase
- Hardness Is Increased by Decreasing grain/particle size
- But decomposition of WC into brittle phases (into W₂C, or Co_xW_yC_z) can form in Spray deposited material causing sliding and abrasive wear

36

- With WC-18 wt. % Co powder, nano-crystalline LENS™ deposited microstructure with increased thermal stability of WC has been realized
- Characteristic LENS™
 processing conditions (Short
 high-temperature duration time
 and nearly oxygen free
 environment) provides the
 more desirable microstructure
 feature

LENS™ Processed SX 432 Grade Nanocrystalline WC-18 wt.% Co powder

Powder

LENS™ Deposit

Acc V Spot Margh Doll WD 1 μm 15 8 kV 3 0 25090x RSt: 16 1 WC-18/Co

(a) Low magnification

(b) High magnification

Laserwrist™ Adds 4th and 5th Axes

Part is Built with Deposition Head Perpendicular to Vertical

QuickTimeTM and a Intel Indeo® Video R3.2 decompressor are needed to see this picture.

Jack Build

Jackbuildpb

Summary of Model Based Materials Processing (LENS™) for In-Space Materials Fabrication

- 1. Models and Physical Metallurgy Principles Based Forming Technology
 - No Tooling to Achieve Useful Shaped Functional Objects.
 - Unique Additive Forming Ability for Structural Materials
 - Hollow Internal Features to Reduce Weight
 - Reduces Amount of Starting Material and Need for Machining to Make Parts.
- 2. Provides Enhancement of Mechanical Properties
 - Via Rapid Solidification and Refinement of the Microstructure
 - Strength Enhancement Without Loss of Ductility.
- 3. Inherent Capability to Engineer Composition, Microstructure, and Properties Simultaneously While Shaping the Material.
- 4. Process Improvements Include Higher Build Rates and Greater Overhang Build Capability
- 5. Could Provide Nearly Universal Materials Procesing Capability

Conformal Cooling Channels: Built Into Tooling During Fabrication

Conformal Cooling Channel

